Skip to content

Spectral model base

jaxspec.model.abc.SpectralModel

Bases: Module, Composable

Source code in src/jaxspec/model/abc.py
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
class SpectralModel(nnx.Module, Composable):
    # graph: nx.DiGraph = eqx.field(static=True)
    # modules: dict

    def __init__(self, graph: nx.DiGraph):
        self.graph = graph
        self.modules = {}

        for node, data in self.graph.nodes(data=True):
            if "component" in data["type"]:
                self.modules[data["name"]] = data["component"]  # (**data['kwargs'])

    @classmethod
    def from_string(cls, string: str) -> SpectralModel:
        """
        This constructor enable to build a model from a string. The string should be a valid python expression, with
        the following constraints :

        * The model components should be defined in the jaxspec.model.list module
        * The model components should be separated by a * or a + (no convolution yet)
        * The model components should be written with their parameters in parentheses

        Parameters:
            string : The string to parse

        Examples:
            An absorbed model with a powerlaw and a blackbody:

            >>> model = SpectralModel.from_string("Tbabs()*(Powerlaw() + Blackbody())")
        """

        from .list import model_components

        return simple_eval(string, functions=model_components)

    def to_string(self) -> str:
        """
        This method return the string representation of the model.

        Examples:
            Build a model from a string and convert it back to a string:

            >>> model = SpectralModel.from_string("Tbabs()*(Powerlaw() + Blackbody())")
            >>> model.to_string()
            "Tbabs()*(Powerlaw() + Blackbody())"
        """
        return str(self)

    """
    def __str__(self) -> str:
        def build_expression(node_id):
            node = self.graph.nodes[node_id]
            if node["type"] == "component":
                string = node["component"].__name__

                if node["kwargs"]:
                    kwargs = ", ".join([f"{k}={v}" for k, v in node["kwargs"].items()])
                    string += f"({kwargs})"
                else:
                    string += "()"
                return string

            elif node["type"] == "operation":
                predecessors = list(self.graph.predecessors(node_id))
                operands = [build_expression(pred) for pred in predecessors]
                operation = node["operation_label"]
                return f"({f' {operation} '.join(operands)})"
            elif node["type"] == "out":
                predecessors = list(self.graph.predecessors(node_id))
                return build_expression(predecessors[0])

        return "This must be changed"  # build_expression("out")[1:-1]
    """

    def compose(self, other, operation=None, operation_func=None):
        """
        This function operate a composition between the operation graph of two models
        1) It fuses the two graphs using which joins at the 'out' nodes and change components name to unique identifiers
        2) It relabels the 'out' node with a unique identifier and labels it with the operation
        3) It links the operation to a new 'out' node
        """

        composed_graph = compose(
            self.graph, other.graph, operation=operation, operation_func=operation_func
        )

        return SpectralModel(composed_graph)

    @classmethod
    def from_component(cls, component):
        node_id = str(uuid4())
        graph = nx.DiGraph()

        node_properties = {
            "type": f"{component.type}_component",
            "name": f"{component.__class__.__name__}_1".lower(),
            "component": component,
            "depth": 0,
        }

        graph.add_node(node_id, **node_properties)
        graph.add_node("out", type="out", depth=1)
        graph.add_edge(node_id, "out")

        return cls(graph)

    def _find_multiplicative_components(self, node_id):
        """
        Recursively finds all the multiplicative components connected to the node with the given ID.
        """
        node = self.graph.nodes[node_id]
        multiplicative_nodes = []

        if node.get("type") == "mul_operation":
            # Recursively find all the multiplicative components using the predecessors
            predecessors = self.graph.pred[node_id]
            for node_id in predecessors:
                if "multiplicative_component" == self.graph.nodes[node_id].get("type"):
                    multiplicative_nodes.append(node_id)
                elif "mul_operation" == self.graph.nodes[node_id].get("type"):
                    multiplicative_nodes.extend(self._find_multiplicative_components(node_id))

        return multiplicative_nodes

    @property
    def root_nodes(self) -> list[str]:
        return [
            node_id
            for node_id, in_degree in self.graph.in_degree(self.graph.nodes)
            if in_degree == 0 and ("additive" in self.graph.nodes[node_id].get("type"))
        ]

    @property
    def branches(self) -> list[str]:
        branches = []

        for root_node_id in self.root_nodes:
            root_node_name = self.graph.nodes[root_node_id].get("name")
            path = nx.shortest_path(self.graph, source=root_node_id, target="out")
            multiplicative_components = []

            # Search all multiplicative components connected to this node
            # and apply them at mean energy
            for node_id in path[::-1]:
                multiplicative_components.extend(
                    [node_id for node_id in self._find_multiplicative_components(node_id)]
                )

            branch = ""

            for multiplicative_node_id in multiplicative_components:
                multiplicative_node_name = self.graph.nodes[multiplicative_node_id].get("name")
                branch += f"{multiplicative_node_name}*"

            branch += f"{root_node_name}"
            branches.append(branch)

        return branches

    def turbo_flux(self, e_low, e_high, energy_flux=False, n_points=2, return_branches=False):
        continuum = {}

        ## Evaluate the expected contribution for each component
        for node_id in nx.dag.topological_sort(self.graph):
            node = self.graph.nodes[node_id]

            if node["type"] == "additive_component":
                node_name = node["name"]
                runtime_modules = self.modules[node_name]

                if not energy_flux:
                    continuum[node_name] = runtime_modules._photon_flux(
                        e_low, e_high, n_points=n_points
                    )

                else:
                    continuum[node_name] = runtime_modules._energy_flux(
                        e_low, e_high, n_points=n_points
                    )

            elif node["type"] == "multiplicative_component":
                node_name = node["name"]
                runtime_modules = self.modules[node_name]
                continuum[node_name] = runtime_modules.factor((e_low + e_high) / 2)

            else:
                pass

        ## Propagate the absorption for each branch
        root_nodes = self.root_nodes

        branches = {}

        for root_node_id in root_nodes:
            root_node_name = self.graph.nodes[root_node_id].get("name")
            root_continuum = continuum[root_node_name]

            path = nx.shortest_path(self.graph, source=root_node_id, target="out")
            multiplicative_components = []

            # Search all multiplicative components connected to this node
            # and apply them at mean energy
            for node_id in path[::-1]:
                multiplicative_components.extend(
                    [node_id for node_id in self._find_multiplicative_components(node_id)]
                )

            branch = ""

            for multiplicative_node_id in multiplicative_components:
                multiplicative_node_name = self.graph.nodes[multiplicative_node_id].get("name")
                root_continuum *= continuum[multiplicative_node_name]
                branch += f"{multiplicative_node_name}*"

            branch += f"{root_node_name}"
            branches[branch] = root_continuum

        if return_branches:
            return branches

        return sum(branches.values())

    def to_mermaid(self, file: str | None = None):
        """
        This method returns the mermaid representation of the model.

        Parameters:
            file : The file to write the mermaid representation to.

        Returns:
            A string containing the mermaid representation of the model.
        """
        return export_to_mermaid(self.graph, file)

    @partial(jax.jit, static_argnums=0, static_argnames=("n_points", "split_branches"))
    def photon_flux(self, params, e_low, e_high, n_points=2, split_branches=False):
        r"""
        Compute the expected counts between $E_\min$ and $E_\max$ by integrating the model.

        $$ \Phi_{\text{photon}}\left(E_\min, ~E_\max\right) =
        \int _{E_\min}^{E_\max}\text{d}E ~ \mathcal{M}\left( E \right)
        \quad \left[\frac{\text{photons}}{\text{cm}^2\text{s}}\right]$$

        Parameters:
            params : The parameters of the model.
            e_low : The lower bound of the energy bins.
            e_high : The upper bound of the energy bins.
            n_points : The number of points used to integrate the model in each bin.

        !!! info
            This method is internally used in the inference process and should not be used directly. See
            [`photon_flux`][jaxspec.analysis.results.FitResult.photon_flux] to compute
            the photon flux associated with a set of fitted parameters in a
            [`FitResult`][jaxspec.analysis.results.FitResult]
            instead.
        """

        graphdef, state = nnx.split(self)
        state = set_parameters(params, state)

        return nnx.call((graphdef, state)).turbo_flux(
            e_low, e_high, n_points=n_points, return_branches=split_branches
        )[0]

    @partial(jax.jit, static_argnums=0, static_argnames="n_points")
    def energy_flux(self, params, e_low, e_high, n_points=2):
        r"""
        Compute the expected energy flux between $E_\min$ and $E_\max$ by integrating the model.

        $$ \Phi_{\text{energy}}\left(E_\min, ~E_\max\right) =
        \int _{E_\min}^{E_\max}\text{d}E ~ E ~ \mathcal{M}\left( E \right)
        \quad \left[\frac{\text{keV}}{\text{cm}^2\text{s}}\right]$$

        Parameters:
            params : The parameters of the model.
            e_low : The lower bound of the energy bins.
            e_high : The upper bound of the energy bins.
            n_points : The number of points used to integrate the model in each bin.

        !!! info
            This method is internally used in the inference process and should not be used directly. See
            [`energy_flux`](/references/results/#jaxspec.analysis.results.FitResult.energy_flux) to compute
            the energy flux associated with a set of fitted parameters in a
            [`FitResult`](/references/results/#jaxspec.analysis.results.FitResult)
            instead.
        """

        graphdef, state = nnx.split(self)
        state = set_parameters(params, state)

        return nnx.call((graphdef, state)).turbo_flux(
            e_low, e_high, n_points=n_points, energy_flux=True
        )[0]

photon_flux(params, e_low, e_high, n_points=2, split_branches=False)

Compute the expected counts between \(E_\min\) and \(E_\max\) by integrating the model.

\[ \Phi_{\text{photon}}\left(E_\min, ~E_\max\right) = \int _{E_\min}^{E_\max}\text{d}E ~ \mathcal{M}\left( E \right) \quad \left[\frac{\text{photons}}{\text{cm}^2\text{s}}\right]\]

Parameters:

Name Type Description Default
params

The parameters of the model.

required
e_low

The lower bound of the energy bins.

required
e_high

The upper bound of the energy bins.

required
n_points

The number of points used to integrate the model in each bin.

2

Info

This method is internally used in the inference process and should not be used directly. See photon_flux to compute the photon flux associated with a set of fitted parameters in a FitResult instead.

Source code in src/jaxspec/model/abc.py
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
@partial(jax.jit, static_argnums=0, static_argnames=("n_points", "split_branches"))
def photon_flux(self, params, e_low, e_high, n_points=2, split_branches=False):
    r"""
    Compute the expected counts between $E_\min$ and $E_\max$ by integrating the model.

    $$ \Phi_{\text{photon}}\left(E_\min, ~E_\max\right) =
    \int _{E_\min}^{E_\max}\text{d}E ~ \mathcal{M}\left( E \right)
    \quad \left[\frac{\text{photons}}{\text{cm}^2\text{s}}\right]$$

    Parameters:
        params : The parameters of the model.
        e_low : The lower bound of the energy bins.
        e_high : The upper bound of the energy bins.
        n_points : The number of points used to integrate the model in each bin.

    !!! info
        This method is internally used in the inference process and should not be used directly. See
        [`photon_flux`][jaxspec.analysis.results.FitResult.photon_flux] to compute
        the photon flux associated with a set of fitted parameters in a
        [`FitResult`][jaxspec.analysis.results.FitResult]
        instead.
    """

    graphdef, state = nnx.split(self)
    state = set_parameters(params, state)

    return nnx.call((graphdef, state)).turbo_flux(
        e_low, e_high, n_points=n_points, return_branches=split_branches
    )[0]

energy_flux(params, e_low, e_high, n_points=2)

Compute the expected energy flux between \(E_\min\) and \(E_\max\) by integrating the model.

\[ \Phi_{\text{energy}}\left(E_\min, ~E_\max\right) = \int _{E_\min}^{E_\max}\text{d}E ~ E ~ \mathcal{M}\left( E \right) \quad \left[\frac{\text{keV}}{\text{cm}^2\text{s}}\right]\]

Parameters:

Name Type Description Default
params

The parameters of the model.

required
e_low

The lower bound of the energy bins.

required
e_high

The upper bound of the energy bins.

required
n_points

The number of points used to integrate the model in each bin.

2

Info

This method is internally used in the inference process and should not be used directly. See energy_flux to compute the energy flux associated with a set of fitted parameters in a FitResult instead.

Source code in src/jaxspec/model/abc.py
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
@partial(jax.jit, static_argnums=0, static_argnames="n_points")
def energy_flux(self, params, e_low, e_high, n_points=2):
    r"""
    Compute the expected energy flux between $E_\min$ and $E_\max$ by integrating the model.

    $$ \Phi_{\text{energy}}\left(E_\min, ~E_\max\right) =
    \int _{E_\min}^{E_\max}\text{d}E ~ E ~ \mathcal{M}\left( E \right)
    \quad \left[\frac{\text{keV}}{\text{cm}^2\text{s}}\right]$$

    Parameters:
        params : The parameters of the model.
        e_low : The lower bound of the energy bins.
        e_high : The upper bound of the energy bins.
        n_points : The number of points used to integrate the model in each bin.

    !!! info
        This method is internally used in the inference process and should not be used directly. See
        [`energy_flux`](/references/results/#jaxspec.analysis.results.FitResult.energy_flux) to compute
        the energy flux associated with a set of fitted parameters in a
        [`FitResult`](/references/results/#jaxspec.analysis.results.FitResult)
        instead.
    """

    graphdef, state = nnx.split(self)
    state = set_parameters(params, state)

    return nnx.call((graphdef, state)).turbo_flux(
        e_low, e_high, n_points=n_points, energy_flux=True
    )[0]

from_string(string) classmethod

This constructor enable to build a model from a string. The string should be a valid python expression, with the following constraints :

  • The model components should be defined in the jaxspec.model.list module
  • The model components should be separated by a * or a + (no convolution yet)
  • The model components should be written with their parameters in parentheses

Parameters:

Name Type Description Default
string

The string to parse

required

Examples:

An absorbed model with a powerlaw and a blackbody:

>>> model = SpectralModel.from_string("Tbabs()*(Powerlaw() + Blackbody())")
Source code in src/jaxspec/model/abc.py
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
@classmethod
def from_string(cls, string: str) -> SpectralModel:
    """
    This constructor enable to build a model from a string. The string should be a valid python expression, with
    the following constraints :

    * The model components should be defined in the jaxspec.model.list module
    * The model components should be separated by a * or a + (no convolution yet)
    * The model components should be written with their parameters in parentheses

    Parameters:
        string : The string to parse

    Examples:
        An absorbed model with a powerlaw and a blackbody:

        >>> model = SpectralModel.from_string("Tbabs()*(Powerlaw() + Blackbody())")
    """

    from .list import model_components

    return simple_eval(string, functions=model_components)

to_string()

This method return the string representation of the model.

Examples:

Build a model from a string and convert it back to a string:

>>> model = SpectralModel.from_string("Tbabs()*(Powerlaw() + Blackbody())")
>>> model.to_string()
"Tbabs()*(Powerlaw() + Blackbody())"
Source code in src/jaxspec/model/abc.py
108
109
110
111
112
113
114
115
116
117
118
119
def to_string(self) -> str:
    """
    This method return the string representation of the model.

    Examples:
        Build a model from a string and convert it back to a string:

        >>> model = SpectralModel.from_string("Tbabs()*(Powerlaw() + Blackbody())")
        >>> model.to_string()
        "Tbabs()*(Powerlaw() + Blackbody())"
    """
    return str(self)

jaxspec.model.abc.AdditiveComponent

Bases: ModelComponent

Source code in src/jaxspec/model/abc.py
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
class AdditiveComponent(ModelComponent):
    type = "additive"

    def continuum(self, energy):
        r"""
        Compute the continuum of the component.

        Parameters:
            energy : The energy at which to compute the continuum.
        """
        return jnp.zeros_like(energy)

    def integrated_continuum(self, e_low, e_high):
        r"""
        Compute the integrated continuum between $E_\min$ and $E_\max$.

        Parameters:
            e_low: Lower bound of the energy bin.
            e_high: Upper bound of the energy bin.
        """
        return jnp.zeros_like((e_low + e_high) / 2)

    def _photon_flux(self, e_low, e_high, n_points=2):
        energy = jnp.linspace(e_low, e_high, n_points, axis=-1)
        continuum = self.continuum(energy)
        integrated_continuum = self.integrated_continuum(e_low, e_high)

        return jsp.integrate.trapezoid(continuum, energy, axis=-1) + integrated_continuum

    def _energy_flux(self, e_low, e_high, n_points=2):
        energy = jnp.linspace(e_low, e_high, n_points, axis=-1)
        continuum = self.continuum(energy)
        integrated_continuum = self.integrated_continuum(e_low, e_high)

        return jsp.integrate.trapezoid(
            continuum * energy**2, jnp.log(energy), axis=-1
        ) + integrated_continuum * (e_high - e_low)

    @partial(jax.jit, static_argnums=0, static_argnames="n_points")
    def photon_flux(self, params, e_low, e_high, n_points=2):
        return SpectralModel.from_component(self).photon_flux(
            params, e_low, e_high, n_points=n_points
        )

    @partial(jax.jit, static_argnums=0, static_argnames="n_points")
    def energy_flux(self, params, e_low, e_high, n_points=2):
        return SpectralModel.from_component(self).energy_flux(
            params, e_low, e_high, n_points=n_points
        )

continuum(energy)

Compute the continuum of the component.

Parameters:

Name Type Description Default
energy

The energy at which to compute the continuum.

required
Source code in src/jaxspec/model/abc.py
379
380
381
382
383
384
385
386
def continuum(self, energy):
    r"""
    Compute the continuum of the component.

    Parameters:
        energy : The energy at which to compute the continuum.
    """
    return jnp.zeros_like(energy)

integrated_continuum(e_low, e_high)

Compute the integrated continuum between \(E_\min\) and \(E_\max\).

Parameters:

Name Type Description Default
e_low

Lower bound of the energy bin.

required
e_high

Upper bound of the energy bin.

required
Source code in src/jaxspec/model/abc.py
388
389
390
391
392
393
394
395
396
def integrated_continuum(self, e_low, e_high):
    r"""
    Compute the integrated continuum between $E_\min$ and $E_\max$.

    Parameters:
        e_low: Lower bound of the energy bin.
        e_high: Upper bound of the energy bin.
    """
    return jnp.zeros_like((e_low + e_high) / 2)

jaxspec.model.abc.MultiplicativeComponent

Bases: ModelComponent

Source code in src/jaxspec/model/abc.py
427
428
429
430
431
432
433
434
435
436
437
class MultiplicativeComponent(ModelComponent):
    type = "multiplicative"

    def factor(self, energy):
        """
        Absorption factor applied for a given energy

        Parameters:
            energy : The energy at which to compute the factor.
        """
        return jnp.ones_like(energy)

factor(energy)

Absorption factor applied for a given energy

Parameters:

Name Type Description Default
energy

The energy at which to compute the factor.

required
Source code in src/jaxspec/model/abc.py
430
431
432
433
434
435
436
437
def factor(self, energy):
    """
    Absorption factor applied for a given energy

    Parameters:
        energy : The energy at which to compute the factor.
    """
    return jnp.ones_like(energy)